INTRODUCTION

Management of Weight Loss in Cats

Weight loss and anorexia in cats are common problems secondary to numerous underlying diseases. Prolonged anorexia and weight loss can lead to serious sequelae such as hepatic lipidosis [1], reduced immune function [2], delayed wound healing [2], decreased survival times [3], and indirectly influence an owner’s decision to euthanize cats with chronic disease [4]. Regardless of the underlying disease, appetite modulation via pharmacotherapy can play a valuable role to improve a patient’s nutritional status and ability to recover from the underlying illness or injury [2]. There are no approved veterinary products to manage weight loss in cats.

Mirtazapine

Mirtazapine is a noreadnergic and specific serotonin antagonist with antidepressant and appetite-stimulating properties. Its presynaptic α2-adrenergic receptor antagonism results in increased norepinephrine which likely contributes to its appetite-stimulating effects [2]. Mirtazapine blocks three serotonin (5-HT2A, 5-HT2C and 5-HT3) and histamine (H1) receptors. Antagonism of 5-HT2C and/or H1 receptors potentially stimulate appetite regulated by the hypothalamus thus leading to weight gain [5]. Antagonism of 5-HT3 reduces nausea and vomiting in humans [6]. Mirtazapine has been shown to increase food intake and weight gain in both humans [7] and cats [2, 8].

RESULTS

Application

Cats received 0.5 mg/kg by mouth (oral administration) or to the inner pinna (transdermal application). Following a 5-day washout, each cat received the alternate treatment. All cats wore Elizabethan collars throughout the course of the study.

Assessments

Plasma was collected pre-dose and at 1, 2, 4, 6, 8, 12, 24, 48, 72, and 96 h after administration. Mirtazapine concentrations were measured using an LC-MS/MS method. The following PK parameters were calculated (via standard methods WinNonlin Professional 5.3) and statistically compared (via Wilcoxon signed rank test with significance set at p < 0.05).

- Cmax: time to maximum (peak) concentration
- Tmax: maximum (peak) concentration
- T1/2: elimination half-life
- AUC: area under the concentration-time curve

Table 1: Mirtazapine PK parameters

<table>
<thead>
<tr>
<th></th>
<th>Transdermal Application (n=8)</th>
<th>Oral Administration (n=8)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmax (h)</td>
<td>Mean (SD) Median (range)</td>
<td>Mean (SD) Median (range)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.6) (9.0) (1.0-48.0)</td>
<td>(11.3) (1.0) (1.0-2.0)</td>
<td>0.02†</td>
</tr>
<tr>
<td>Cmax (ng/mL)</td>
<td>Mean (SD) Median (range)</td>
<td>Mean (SD) Median (range)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(43.5) (6.6) (21.1-129)</td>
<td>(83.1) (31.2) (43.4-128)</td>
<td>0.04†</td>
</tr>
<tr>
<td>AUC_{trans} (ng*h/mL)</td>
<td>Mean (SD) Median (range)</td>
<td>Mean (SD) Median (range)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(260) (247) (204-397)</td>
<td>(434) (494) (208-590)</td>
<td>0.09</td>
</tr>
<tr>
<td>T1/2 (h)</td>
<td>Mean (SD) Median (range)</td>
<td>Mean (SD) Median (range)</td>
<td>0.01†</td>
</tr>
<tr>
<td></td>
<td>(6.0) (4.2) (1.9-13.4)</td>
<td>(10.1) (4.7) (1.7-10.0)</td>
<td></td>
</tr>
</tbody>
</table>

Oral mirtazapine was rapidly absorbed from the gastrointestinal tract. The absorption of transdermal mirtazapine was slower compared to oral administration. The mean ± standard deviation relative bioavailability of transdermal mirtazapine compared to oral mirtazapine was 64.9%.

DISCUSSION

Absorption of mirtazapine was faster, more consistent, and about 2-fold higher compared to transdermal application.

REFERENCES

